skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cobeli, Cristian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the set of visible lattice points in multidimensional hypercubes. The problems we investigate mix together geometric, probabilistic and number theoretic tones. For example, we prove that almost all self-visible triangles with vertices in the lattice of points with integer coordinates in W = [0,N]^d are almost equilateral having all sides almost equal to √dN/√6, and the sine of the typical angle between rays from the visual spectra from the origin of W is, in the limit, equal to √7/4, as d and N/d tend to infinity. We also show that there exists an interesting number theoretic constant Λd,K, which is the limit probability of the chance that a K-polytope with vertices in the lattice W has all vertices visible from each other. 
    more » « less